USN

10MAT31

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Engineering Mathematics - III

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Find the Fouricr series for the function $f(x)=x+x^{2}$ over the interval $-\pi \leq x \leq \pi$. Hence deduce that:
i) $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots .$.
ii) $\frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots .$.
(07 Marks)
b. Expand the function $f(x)=x(\pi-x)$ over the interval $(0, \pi)$ in half range Fourier cosine series.
(06 Marks)
c. Find the constant term and the first two harmonies for the function $f(\theta)$ given by the following table:
(07 Marks)

θ (in degrees)	0	60	120	180	240	300	360
$\mathrm{f}(\theta)$	0.8	0.6	0.4	0.7	0.9	1.1	0.8

2 a. Show that the Fourier transform of the function

$$
f(x)=\left\{\begin{array}{cc}
1-x^{2}, & |x| \leq 1 \\
0, & |x|>1
\end{array} \text { is } F(\alpha)=\frac{2 \sqrt{2}}{\alpha \sqrt{3}}(\sin \alpha-\alpha \cos \alpha) .\right.
$$

Hence deduce that $\int_{0}^{\infty} \frac{\sin x-x \cos x}{x^{3}} d x=\frac{\pi}{4}$.
(07 Marks)
b. Find the Fourier cosine transform of $f(x)=\frac{1}{1+x^{2}}$.
(06 Marks)
c. If the Fourier sine transform of $f(x)$ is given by $F_{s}(u)=\frac{\pi}{2} e^{-2 u}$, find the function $f(x)$.
(07 Marks)
3 a. Find the various possible solutions of two-dimensional Laplace equation by method of separation of variables.
(07 Marks)
b. Obtain the D^{\prime} Aiembert's solution of the wave equation $u_{t t}=c^{2} u_{\mathrm{xx}}$ subject to the conditions $\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})$ and $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}(\mathrm{x}, 0)=0$.
(06 Marks)
c. Solve the one-dimensional heat equation $\mathrm{c}^{2} \mathrm{u}_{\mathrm{xx}}=\mathrm{u}_{\mathrm{t}}, 0<\mathrm{x}<\pi$ subject to the conditions $\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(\pi, \mathrm{t})=0, \mathrm{u}(\mathrm{x}, 0)=\mathrm{u}_{0} \sin \mathrm{x}$ where u_{0} is a non-zero constant.
(07 Marks)
4 a. Find a curve of the best fit of the form $y=a x^{b}$ to the following data:
(07 Marks)

x	1	2	3	4	5
y	0.5	2	4.5	8	12.5

b. For conducting a practical examination, the chemistry department of a college requires 10,12 and 7 units of 3 chemicals x, y and z respectively. The chemicals are available in 2 types of boxes: Box A and Box B. Box A contains 3, 2 and 1 units of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ respectively and cost Rs.300. Box B contains 1, 2 and 2 units of x, y, z respectively and costs Rs. 200 . Find how many boxes of each type should be bought by the department so that the total cost is minimum. Solve graphically.
(06 Marks)
c. Solve the following LPP by simplex method:

Maximize $\mathrm{z}=2 \mathrm{x}_{1}+4 \mathrm{x}_{2}+3 \mathrm{x}_{3}$
Subject to the constraints $3 x_{1}+4 x_{2}+2 x_{3} \leq 60 \quad 2 x_{1}+x_{2}+2 x_{3} \leq 40$

$$
x_{1}+3 x_{2}+2 x_{3} \leq 80
$$

$$
\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \geq 0
$$

(07 Marks)

PART - B

5 a. Use Newton-Raphson method to find an approximate root of the equation $\mathrm{x} \log _{10} \mathrm{x}=1.2$ correct to 5 decimal places that is near 2.5.
(07 Marks)
b. Use Relaxation method to solve the following system of linear equations:
$8 x+3 y+2 z=13$
$x+5 y+z=7$
$2 x+y+6 z=9$
(06 Marks)
c. Find the numerically largest eigen value and the corresponding eigen vector of the matrix $A=\left[\begin{array}{ccc}5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5\end{array}\right]$ by power method taking $X^{(0)}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\text {T }}$. Perform 6 iterations.(07 Marks)

6 a. Find the interpolating polynomial for the function $y=f(x)$ given by $f(0)=1, f(1)=2$, $f(2)=1, f(3)=10$. Hence evaluate $f(0.75)$ and $f(2.5)$.
(07 Marks)
b. Apply Lagrange's method to find the value of x corresponding to $f(x)=15$ from the following data:
(06 Marks)

x	5	6	9	11
$f(x)$	12	13	14	16

c. Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by using Simpson's $\frac{3^{\text {th }}}{8}$ rule dividing the interval $(0,1)$ into 6 equal parts. Hence deduce the approximate value of π.
(07 Marks)
7 a. Solve the wave equation $u_{t t}=4 u_{x x}$ subject to the conditions $u(0, t)=0, u(4, t)=0$, $\mathrm{u}_{\mathrm{t}}(\mathrm{x}, 0)=0$ and $\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}(4-\mathrm{x})$ by taking $\mathrm{h}=1, \mathrm{k}=0.5$ upto four steps.
(07 Marks)
b. Find the numerical solution of the equation $u_{x x}=u_{t}$ when $u(0, t)=0, u(1, t)=0, t \geq 0$ and $\mathrm{u}(\mathrm{x}, 0)=\sin \pi \mathrm{x}, 0 \leq \mathrm{x} \leq 1$. Carryout computations for two levels taking $\mathrm{h}=\frac{1}{3}$ and $\mathrm{k}=\frac{1}{36}$.
(07 Marks)
c. Solve Laplace's equation $u_{x x}+u_{y y}=0$ for the following square mesh with boundary values as shown in the following Fig.Q7(c).

Fig.Q7(c)
(06 Marks)

8 a. Find the z-transform of $5 n^{2}+4 \cos \frac{n \pi}{2}-4^{n+2}$ and $\sinh n \theta$.
(06 Marks)
b. Obtain in inverse z-transform of $\frac{z(2 z+3)}{(z+2)(z-4)}$.
(07 Marks)
c. Using z-transforms, solve $\mathbf{u}_{\mathrm{n}+2}+3 \mathbf{u}_{\mathrm{n}+1}+2 \mathbf{u}_{\mathrm{n}}=3^{\mathrm{n}}$ given $\mathbf{u}_{0}=0, \mathrm{u}_{1}=1$.
(07 Marks)

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Electronic Circuits

Time: 3 hrs.
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Draw the fixed bias circuit using BJT and derive the expressions for operating point. Mention its advantages and disadvantages.
(08 Marks)
b. For the circuit shown in Fig. Q1(b) determine the operating point. Given $\beta=100$, $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$
(04 Marks)

Fig. Q1(b)
c. Explain the working of transistor as a switch and define delay time, rise time, storage time and fall time with respect to transistor switching.
(08 Marks)
2 a. Explain the construction, operation and characteristics of N-channel E-MOSFET with sketches.
(10 Marks)
b. Briefly discuss the basic operation of CMOS inverter with a neat diagram. Mention two advantages of CMOS.
(06 Marks)
c. List the difference between JFET's and MOSFETS (any four).
(04 Marks)
3 a. What is an optocouplers? Explain the parameters of optocouplers in brief. (06 Marks)
b. Explain any six characteristics parameters of photo sensors.
(06 Marks)
c. Explain the basic operation and construction of LED and also discuss the different LED characteristics.
(08 Marks)
4 a. Draw the generalized h-parameter model of a transistor based amplifier and derive the expression for :
i) Current gain
ii) Input Impedance
iii) Voltage gain
iv) Output admittance.
(10 Marks)
b. Discuss the effect of coupling and bypass capacitors on the low frequency response of the voltage divider BJT amplifier with relevant sketches.
(10 Marks)

PART - B

5 a. Derive the expression for voltage gain, Input resistances and output resistance in case of voltage series feedback with a neat diagram.
(10 Marks)
b. What are the advantages of negative feedback?
(06 Marks)
c. An amplifier without feedback has a voltage gain of 100 .
i) Determine the gain of the amplifier with an introduction of 10% negative feedback.
ii) Also find the feedback factor, if the gain required with feedback is 50 .
(04 Marks)
6 a. Explain the operation of monostable multi-vibrator with a neat diagram. (using BJT).
(08 Marks)
b. Explain RC low pass circuit and discuss the behavior of this circuit for step and pulse inputs.
(08 Marks)
c. Write a note on Barkhausen criterion.
(04 Marks)
7 a. Explain the operation of buck regulator with relevant diagrams.
(10 Marks)
b. Design mains transformer with the following specifications,

Assume $B=60,000$ lines/sq.inch.
Primary voltage : $220 \mathrm{~V}, 50 \mathrm{~Hz}$
Secondary voltage : i) 5 V at 1 A and efficiency is 90%
ii) $12-0-12 \mathrm{~V}$ at 100 mA efficiency is 90%
(06 Marks)
c. Define line regulation and load regulation for a regulated power supply.

8 a. Define the following as referred to op-amp
i) Bandwidth
ii) CMRR
iii) PSRR
iv) Slew rate
v) Open loop gain
vi) Setting time
(06 Marks)
b. Give a comparison between ideal op-amp with practical op-amp.
(06 Marks)
c. With neat figure and relevant waveform, explain the working of relaxation oscillator circuit using op-amp.
(08 Marks)
\square

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Logic Design

Time: 3 hrs.

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. What is a digital electronic circuit? List the applications of digital circuits and systems.
(04 Marks)
b. With an aid of a circuit diagram, explain the operation of a 2 -input standard TTL NAND gate with totem-pole output. Show that NAND gate is an universal logic gate. (08 Marks)
c. Explain sourcing and sinking current, noise immunity, standard loading and output-input profile of standard TTL device.
(08 Marks)
2 a. Realize a logic circuit using only NAND gates that converts a 4-bit binary input to a Graycode output. Use Karnaugh maps for simplification of logic expressions.
(12 Marks)
b. Find the simplified expression of, $Y=f(A, B, C, D)=\sum m(0,3,4,5,6,7,11,14)$ using Quine-Mccluskey method.
(08 Marks)
3 a. Design a full adder circuit using a 3-to-8 decoder and multi-input OR gates. Write VHDL / verilog code for a 2 to 4 decoder.
(06 Marks)
b. Explain how a 7446 decoder-driver is ued to drive a common anode seven-segment indicator.
(06 Marks)
c. Distinguish :
(i) PAL and PROM.
(ii) PLA and PAL.
(iii) Encoder and multiplexer.
(iv) Even parity and odd parity.
(08 Marks)
4 a. What is a Schmitt trigger? Show how it can be used to ensure rapid switching action.
b. Show how to use is (04 Marks)
c. Show how SR flip-flop is converted into JK flip-flop and explain how racing problem in JK flip-flop is avoided. Write VHDL/verilog code for JK flip-flop.
(10 Marks)

PART - B

5 a. What is a shit register? How long will it take to shift an 8 -bit number into a 74164 shift register if the clock is set at 10 MHz ?
(04 Marks)
b. Explain the working of 4-bit parallel-access shift register 7495 . Show how it can be wired for shift left operation.
(03 Marks)
c. Discuss the advantages and disadvantages of a ring counter. Also write VHDL/verilog code for a twisted tail counter.
(08 Marks)
6 a. Realize a 3-bit asynchronous binary up-down counter using J-K flip-flops and basic logic gates.
(06 Marks)
b. Design a modulo-4 synchronous counter using J-K flip flops.
(10 Marks)
c. Realize a sequence generator circuit using synchronous counter to generate a repetitive sequence of binary word 1011 with minimum number of memory elements.
(04 Marks)

7 a. Distinguish Moore model and Mealy model of sequential logic system.
b. What is an ASM chart? Draw the ASM chart of a sequence generator that receives binary data stream at its input, X and signals when a combination ' 011 ' arrives at the input by making its output, Y high which otherwise remains low. Consider Moore model. (08 Marks)
c. Discuss the problems with asynchronous sequential logic circuits.

8 a. What is a binary ladder DAC? Mention its advantages over the resistance divider DAC. Also explain accuracy and resolution of DAC.
b. Explain the working of a 2-bit flash A/D converter. List its applications.
c. Explain the suceessive approximation technique of A/D conversion. When is it useful?
(06 Marks)

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Object Oriented Programming with $\mathbf{C + +}$

Time: 3 hrs .

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

1 a. Explain basic data iypes available in C++, briefly with examples.
(05 Marks)
b. What is inline function? Mention its advantages and also write a program to find cube of a given number.
(05 Marks)
c. What is function overloading? Write a C++ program to find area of circle, triangle and rectangle by overloading the function area. (05 Marks)
d. Explain reference variable in C++. Also write a program to swap values of two given variables using reference variables.
(05 Marks)
2 a. Explain how to achieve data hiding and encapsulation in $\mathrm{C}++$, with suitable program.
(08 Marks)
b. What are constructor and destructor? Can you overload constructor and destructor? Justify with suitable example.
(08 Marks)
c. Explain static data member of a class. Also write a program to count the number of objects created.
(04 Marks)
3 a. What is friend function? Write a program using bridge friend function swap to exchange the values of two variables and also dispiay the result before and after swapping.
(10 Marks)
b. Write a C++ program to add two complex numbers by overloading the operator + using member function.
(05 Marks)
c. What is template function? Write a program using tempiate function large to find the largest of three ints and three double numbers.
(05 Marks)
4 a. How to achieve reusability in $\mathrm{C}++$? Illustrate with an example.
(10 Marks)
b. Explain the differences between the three visibility modes, with suitable example. ($\mathbf{1 0} \mathbf{~ M a r k s)}$

PART - B

5 a. Explain how to pass arguments to base class constructors in multiple inheritance, with suitable exampic.
(10 Marks)
b. Explain with the suitable diagram and program the virtual base class.
(10 Marks)
6 a. What is runtime polymorphism? How to achieve it? Illustrate with an example program.
b. Fvplain pure virtual function and abstract lass with Marks)

7 a. Explain with the neat diagram, the stream class hierarchy. (07 Marks)
b. Explain any five manipulators, with example. (06 Marks)
c. Explain briefly various file operations. (07 Marks)

8 a. What is exception? Explain briefly exception handling options. (10 Marks)
b. What is STL? Explain vector container briefly.
(10 Marks)

Third Semester B.E. Degree Examination, Dec.2017/Jan, 2018 Data Structures with C

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. What are the various memory allocation techniques? Explain them with example. (06 Marks)
b. What is recursion? What are the various types of recursion explain with example. (06 Marks)
c. What is a magic square? What is the procedure given by coxeter to generate the magic square?
(08 Marks)
2 a. Point out the differences between malloc() and calloc()
(04 Marks)
b. Write an algorithm to add two polynomials using abstract data type polynomial. (08 Marks)
c. Write an algorithm to search for an element in the sparse matrix represented as a triple.
(08 Marks)
3 a. Define stack, write an ADT of it.
(04 Marks)
b. Convert the following infix to postfix notations.
i) $\left((\mathrm{A}+(\mathrm{B}-\mathrm{C}) * \mathrm{D})^{\wedge} \mathrm{E}+\mathrm{F}\right)$
ii) $X^{\wedge} Y^{\wedge} Z-M+N+P / Q$.
(06 Marks)
c. Write an algorithm to implement queue full and queue empty functions for the non - circular queue.
(10 Marks)
4 a. What are linked lists? Point out its types and how a linked list is represented in ' C '?
(04 Marks)
b. Write a ' C ' functions to insert an item at the front end of the list.
(04 Marks)
c. What are double - linked lists. Explain the procedure or a ' C^{\prime} function how to insert a node at the front end and at the rear end.
(10 Marks)
d. Point out any two differences between single and double link lists.
(02 Marks)

PART - B

5
a. Define the following: i) Strictly binary tree
ii) Skewed tree
iii) Complete binary tree
iv) Binary search tree,
(04 Marks)
b. Consider a binary tree, given in Fig.Q5(b).

Write the preorder, postorder and inorder traversals of the binary tree of Fig.Q5(b) (06 Marks)

Fig.Q5(b)
c. Write a ' C ' functions to traverse the tree in inorder, preorder, and postorder level. (06 Marks)
d. What are threaded binary trees? What are its types? How they are different from normal binary trees.
(04 Marks)

6 a. What is a binary search tree? Explain how to insert an element in it.
(05 Marks)
b. Consider the following forest given in Fig. 6(b) and convert the forest into a binary tree.
(05 Marks)

Fig. Q6(b)
c. What is a selection tree? What are its types and explain them briefly.
(04 Marks)
d. What is an adjacency matrix and adjacency list explain both with an example.

7 a. What is single ended and double ended priority queues?
b. What is a binomial heap? What are the types of binomial heaps?
c. What is a Fibonacci heap? What are the types of Fibonacci heaps?
d. What is a paring heap? What are its types?

8 a. What is an AVL tree? Write an algorithin to create an AVL tree.
(10 Marks)
b. What is a Red Black tree? What is the rank of a node in a red-black tree? How a red-black tree can be represented?

USN

MATDIP301
Third Semester B.E. Degree Examination, Dec.2017/Jan.2018 Advanced Mathematics - I

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Find the modulus and amplitude of $\frac{4+2 \mathrm{i}}{2-3 \mathrm{i}}$.
(06 Marks)
b. Express the complex number $2+3 \mathrm{i}+\frac{1}{1-\mathrm{i}}$ in the form $\mathrm{a}+\mathrm{ib}$.
(07 Marks)
c. Simplify $\frac{(\cos 3 \theta+\mathrm{i} \sin 3 \theta)^{4}(\cos 4 \theta-\mathrm{i} \sin 4 \theta)^{5}}{(\cos 4 \theta+\mathrm{i} \sin 4 \theta)^{3}(\cos 5 \theta+\mathrm{i} \sin 5 \theta)^{-4}}$.
(07 Marks)

2 a. Find the $\mathrm{n}^{\text {th }}$ derivative of $\mathrm{e}^{\mathrm{ax}} \sin (\mathrm{bx}+\boldsymbol{l})$.
(06 Marks)
b. Find the $n^{\text {th }}$ derivative of $\frac{x^{2}}{2 x^{2}+7 x+6}$.
(07 Marks)
c. If $y=e^{a \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$.
(07 Marks)
3 a. If ϕ is the angle between the tangent and radius vector to the curve $r=f(\theta)$ at any point (r, θ), prove that $\tan \theta=\frac{r d \theta}{d r}$
(06 Marks)
b. Find the angle of intersection between the curves $r^{n}=a^{n} \cos n \theta$ and $r^{n}=b^{n} \sin n \theta$.
c. Using Maclaurin's series, expand tan x up to the term containing x^{5} (07 Marks)

4 a. If $Z=f(x+c t)+\phi(x-c t)$, prove that $\frac{\partial^{2} z}{\partial t^{2}}=C^{2} \frac{\partial^{2} z}{\partial x^{2}}$.
(06 Marks)
b. If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$ prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} \tan u$.
(07 Marks)
c. If $u=f(x-y, y-z, z-x)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
(07 Marks)

PART - B

5
a. Obtain the reduction formula for $\int \cos ^{n} x d x$.
(06 Marks)
b. Using reduction formula evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} d x$.
(07 Marks)
c. Evaluate $\int_{0}^{1} \int_{0}^{1} e^{x+y} d x d y$.
(07 Marks)

6
a. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2} y z d x d y d z$.
(07) Marks)
b. Prove that $\beta(\mathrm{m}, \mathrm{n})=\frac{\Gamma(\mathrm{m}) \Gamma(\mathrm{n})}{\Gamma(\mathrm{m}+\mathrm{n})}$.
c. Prove that $\Gamma(1 / 2)=\sqrt{\pi}$.

7 a. Solve $3 e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$.
b. Solve $(2 x+3 y+4) d x-(4 x+6 y+5) d y=0$.
c. Solve $\frac{d y}{d x}+y \tan x=\cos x$.

8 a. Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=-2 \cos h x$.
b. Solve $\left(D^{2}-4 D+3\right) y=\sin 3 x \cos 2 x$.
c. Solve $\frac{d^{2} y}{d x^{2}}+4 y=x^{2}+\cos 2 x$.
(06 Marks)
(07 Marks)
(07 Marks)

